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Summary

Longitudinal phase space tomography is essential in most of the CERN synchrotrons to measure longitudinal
beam parameters. An implementation of phase space tomography written in Fortran95 has been used for
many years, and is a vital part of the beam diagnostics in the PS Complex. To enable future developments
and applications of tomography, a new version of the code was required. A fully refactored and rewritten
version has been developed in mixed Python/C++, which allows more flexible and easily extended longitud-
inal tomography. This note gives an overview of how tomography is used to reconstruct longitudinal phase
space distributions, and discusses the main differences between the original and new implementations.
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1 Introduction

Tomographic reconstruction is used to measure the longitudinal phase space distribution of bunches
in the synchrotrons of the PS Complex, and there is an increasing desire to implement it in the
higher energy machines as well. The existing algorithm was written in Fortran95 and optimised
with High Performance Fortran (HPF) to give fast run times and high quality reconstruction. The
objective for the new version is to maintain high quality and reasonable run times, whilst also
greatly increasing the flexibility of the code. The extra flexibility comes from the complete refact-
oring and translation of the code into a Python library, which will allow much more variety in
how the code is used and facilitate new developments. In order to maintain suitable run times,
the computationally expensive parts of the algorithm are written in C++, which is accessed dir-
ectly from the Python code. The source code is available from a CERN GitLab repository (ht-
tps://gitlab.cern.ch/longitudinaltomography/tomographyv3) along with a comprehensive set of ex-
ample files.

1.1 Tomographic Principle

Tomography is the method of reconstructing an n-dimensional object from its (n−1)-dimensional pro-
jections. For example, a medical Computed Tomography (CT) scan uses many one-dimensional pro-
files of x-ray transparency taken from different angles to give doctors an image of a two-dimensional
slice through a patient. The same principle may be used for longitudinal beam tomography, using
a series of one-dimensional measurements of the longitudinal bunch profile to reconstruct the two-
dimensional phase space [1]. The technique takes advantage of the fact that, from turn-to-turn, the
particles are moving in phase space, resulting in the time projection being from a different angle at
each measurement.

Figure 1 shows the profiles recorded every 25 machine turns over 1 synchrotron period for a
simulated bunch making large quadrupole oscillations, Fig. 2 shows the corresponding distribution
in phase space every 30 profiles at the projections indicated by the red lines in Fig. 1, illustrating
how the phase space evolves with time.
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Figure 1: Waterfall plot of a bunch undergoing large quadrupole oscillations.
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The tomography algorithm uses these measured profiles to create a reconstruction of the phase
space distribution based on the Algebraic Reconstruction Technique (ART) [2]. As shown by the
emergence of an S-shaped distribution in Fig. 2, synchrotron motion is non-linear. Since ART is
a linear technique it would lead to a significant loss of quality if used directly. This is solved by
introducing synchrotron motion to the algorithm via particle tracking. Test particles are distributed
uniformly in phase space and tracked through the number of turns corresponding to the duration of
measurement. On every turn that corresponds to a measured profile, the phase and energy of the
particles are recorded, either directly or binned. The phase space distribution is then weighted based
on the line density of each profile in an iterative process, which allows an accurate reconstruction of
the phase space distribution to be made.
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(a) Phase space at profile 0.
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(b) Phase space at profile 30.
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(c) Phase space at profile 60.
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(d) Phase space at profile 90.
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(e) Phase space at profile 120.

0 100 200 300 400 500

Profile 150

0 100 200 300 400 500
dt (ns)

8

6

4

2

0

2

4

6

8

dE
 (M

eV
)

(f) Phase space at profile 150.

Figure 2: Simulated phase space distributions during one synchrotron period of quadrupole oscilla-
tions.
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1.2 Original Fortran95 Implementation

The Fortran95 version takes input in a standardised format provided from an ASCII encoded text
file or pipelined through STDIN. The output uses a mixture of ASCII files written to disc and
STDOUT to return the results. For operational use, the data input and output, and data visualisation
are controlled by the tomoscope application [3], an operational graphical user interface (GUI) for
tomography.

Two different coordinate systems are used for the definition of the phase space. During tracking
the particles have their coordinates defined in phase and energy. For binning and reconstruction
these are converted to bin numbers, with each bin having width ∆φ and height ∆E, determined by
the maximum phase and energy deviations over the reconstruction. To save computational effort, the
part of phase space considered is typically bounded by the iso-Hamiltonian contour corresponding
to the maximum phase deviation in the measured profiles.
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Figure 3: Limits of the reconstruction area in phase (red) and energy (black) given as number of
bins. The area contained by the black contour will be populated with test particles, unless a flag is
set to populate the entire phase space.

Figure 3 shows the reconstruction limits, computed for an arbitrary set of input parameters. The
vertical red lines are the phase limits (in bin numbers), from these the energy limit is defined by the
black line (in bin numbers). This region bounded by the black contour defines the area that will be
populated with test particles, which are tracked and used for the reconstruction. Note that a flag
can be set, populating the entire area with macroparticles.

The Fortran95 version uses a very memory efficient method for storing the results of tracking.
Rather than storing particle coordinates at every turn (or a subset), three arrays are populated
during the tracking process, maps, mapsi and mapsweight. These store respectively, the cell number
for each cell in phase space, the phase bin number where the macroparticles from a given cell landed,
and the number of macroparticles contained in each of these bins.

Figure 4 shows an example of the maps arrays. Here, two measured profiles correspond to a 5×5
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time frame grid, with a 3 × 3 grid populated by test particles. This is analogous to the example
shown in Fig. 3. The maps array is a 3-dimensional array with dimensions m × n × l, where m is
the number of phase bins, n is the number of energy bins and l is the number of profiles, giving
dimensions 5 × 5 × 2 in this example.

1 2 3

1 2 3 4 5

1

2

3

4

5

4 5 6

7 8 9

10 11 12

1 2 3 4 5

1

2

3

4

5

13 14 15

16 17 18

Phase Bin

E
ne

rg
y 

B
in

Phase Bin

E
ne

rg
y 

B
in

Reconstruction area Reconstruction area

Time frame (profile) 1 Time frame (profile) 2

-1-1 -1 -1 -1

-1

-1

-1

-1-1 -1 -1 -1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1-1 -1 -1

-1 -1 -1

Figure 4: Layout and contents of the maps array. Figure shows maps array for first (blue) and second
(red) time frame, out of N time frames. Empty cells are populated with -1 to flag that they are not
valid for indexing.

The elements of the maps array that correspond to bins containing particles are numbered as
shown in Fig. 4, with empty bins containing −1. The positive non-zero elements of maps are used
to index the mapsi and mapsweight arrays. The mapsi and mapsweight arrays are initialised with
dimensions j × k, where j is the total number of cells in the maps array, and k is proportional to,
and lower than, the number of macroparticles per cell. The array size can be increased if more bins
are required, but this is very rare.

A uniform distribution of macroparticles is created within the reconstruction area at the turn
corresponding to the profile to be reconstructed. An example sub-set is shown in Fig. 5, which
uses the same time frame grids as Fig. 4, but for clarity the −1s are not shown. In this figure, six
macroparticles are generated in cell number one and six are generated in cell number five (time frame
1), their positions after being tracked from the first to the second profile are shown in time frame 2.
Also, the corresponding values of the mapsweights and mapsi arrays are given.

The test particles are initialised in cell numbers 1 and 5 (maps [2, 2, 1] = 1, maps [3, 3, 1] = 5),
with their position after tracking to the next measured profile shown on the right. The values of
the mapsweights and mapsi array, in row 1 and row 5, show that the 6 macroparticles in cell 1 are
found in phase bin 2, the 6 macroparticles in cell number 5 are found in phase bin 3, and there are
no others. On profile number 2, cell 1 becomes cell 10 (maps [2, 2, 2] = 10) and cell 5 becomes cell 14
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(maps [3, 3, 2] = 14). Rows 10 and 14 of mapsweights and mapsi are now indexed, showing 4 particles
in phase bin 2 and 2 particles in phase bin 3 on row 10, and 3 particles in phase bin 3 and 3 particles
in phase bin 4 on row 14.
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Figure 5: Figure illustrating the maps, mapsi and mapsweight arrays, together with particle positions
at two time frames. Blue represents the initial time frame, and red represents the following time
frame. The axes are from the binned coordinate system, counting from one (Fortran indexing).

Each particle is tracked from the first to the last time frame. Between the tracking and the sorting,
the coordinates of each particle are mapped to and from the different coordinate systems and saved.
When the tracking is complete, and the three arrays are filled, the program has knowledge of how
many particles ended up in each phase bin on each profile. From the initial number of particles in each
cell at every frame, an initial weight for the cells is given, which is updated during the reconstruction.
Now, a fourth array (phasespace) holding the total weight factor of each cell accumulated from all
time frames, is created. Everything is then set up for the tomographic reconstruction.

The tomographic reconstruction is an iterative process, consisting of three steps indicated in
Fig. 6. First, the back-projection updates the weight of each element of phasespace proportional to
the line density at each measured profile. Next, the projection takes the phasespace array and projects
it onto the time-axis to give the line density equivalent to the current state of the reconstruction.
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Finally, the difference between the reconstructed and measured line densities is taken. This process
is repeated, using the difference from each step to update the phasespace array at the start of the
next. After a specified number of iterations, the resulting phasespace is returned for further analysis.

Figure 6: The three steps of the tomographic reconstruction process.
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2 New Python/C++ Implementation

The main reason for the code translation is to have the tomography code in a format which is both
more flexible and more modular, in a language that will facilitate this. The Fortran95 code is well
tested and reliable, however due to the nature of the algorithm it would be very difficult to change
the way the code is used or add more features.

The change of language and structure comes at a slight cost in run time, currently a full recon-
struction in the new code takes on average about 50% longer than with the Fortran95 code. For
typical operational use cases this extra time will be acceptable, as measurements are not required
to be temporally close together. Additionally, it is now possible for parts of the algorithm, such as
data pre-processing, to be skipped or replaced with alternative user defined versions. Further, when
running repeated reconstructions with identical initial conditions the tracking and preparation can
be executed once, and the coordinates used for multiple separate reconstructions corresponding to
different measurements, significantly reducing the required run time.

Most of the preparation, such as populating the phase space prior to tracking, and data treatment,
such as rebinning measured profiles, is unchanged in the new implementation. This section outlines
the new code structure, and the differences in the reconstruction algorithm.

2.1 Refactoring from Program to Library

After initial translation to Python, the algorithm was refactored into a library. A library structure
significantly increases the flexibility of the code and will simplify customisation and extension in the
future. The packages and modules are identified in Table 1.

Package Name Modules

cpp routines c++ source code
tomolib wrappers.py

data profiles.py
tomography tomography.py

tomography.py
tracking machine.py

tracking.py
tracking.py
particles.py
phase space info.py

utils assertions.py
exceptions.py
data treatment.py
physics.py
tomo input.py
tomo output.py

Table 1: Packages and modules of the tomography library.
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The purpose of each module is:

• C++ source code: The functionality written in C++, not to be accessed directly.

• tomolib wrappers: Python wrappers around the C++ functions.

• profiles: Storage and treatment of measured profiles and calculation of self fields.

• tomography: Base functionality for reconstruction classes.

• tomography: Derives and extends functionality of tomography for default usage. Holds
routines for full reconstruction based on a set of measured profiles and profile coordinates.

• machine: Storage and treatment of accelerator parameters.

• tracking: Base functionality for particle tracking.

• tracking: Derives and extends functionality of tracking for default usage. Holds routines to
track macro-particles for given machine settings.

• particles: Generation and storage of particle distributions for tracking.

• phase space info: Calculation of phase space parameters.

• assertions: Assertions to check data is suitable for reconstruction.

• exceptions: Custom exceptions raised when errors specific to the tomography arise.

• data treatment: Processing measured and generated data.

• physics: Fundamental calculations.

• tomo input: Handling input of information from different sources.

• tomo output: Handling output of information in different formats.

Together, the modules of the library can aid the user in quickly creating customised tomography
programs. For typical operational usage, the data flow is shown in Fig. 7.
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2.2 Tracking

In the Fortran95 implementation, the maps, mapsi and mapsweight arrays are populated during
tracking, which requires the tracking to be periodically interrupted to perform the relevant calcu-
lations. The new implementation does not use the maps structure for the reconstruction, instead
the coordinates of each particle are stored at the instant of every measured profile. Therefore, the
tracking can be done in a continuous loop and the array populated with particle coordinates inde-
pendently to the location of other particles. This structure also allows the tracking to be made highly
parallelised, and makes it readily portable to GPU at a later date.

As in the Fortran95 implementation, both forward and backward tracking are used by default,
with a maximum of two RF harmonics. In the forward direction the change in energy and phase is
given by

∆Ei+1 =∆Ei + V1 sin (∆ϕi + ϕ0) + V2 sin [hr(∆ϕi + ϕ0 − ϕ1,2)] − ∆Eacc,

∆ϕi+1 =∆ϕi −
2πhη0
β2E

∆Ei,
(1)

where ∆Ei is the particle energy deviation from the synchronous energy on turn i, V1 is the funda-
mental harmonic voltage, ∆ϕi is the particle phase deviation from the synchronous phase on turn
i, ϕ0 is the phase offset of the fundamental harmonic, V2 is the voltage of the higher harmonic, hr
is the ratio of the higher harmonic to the fundamental harmonic, ϕ1,2 is the phase offset between
the higher and fundamental harmonics, ∆Eacc is the energy gain per turn, h is the fundamental
harmonic number, η0 is the phase slip factor, β is the synchronous relativistic velocity and E is the
synchronous energy. For backwards tracking the equations are modified to

∆Ei+1 =∆Ei−V1 sin (∆ϕi + ϕ0)−V2 sin [hr(∆ϕi + ϕ0 − ϕ1,2)] − ∆Eacc,

∆ϕi+1 =∆ϕi+
2πhη0
β2E

∆Ei.
(2)

Note that only the sign of the additions to ∆Ei and ∆ϕi are changed (highlighted in red). Care
should be taken with ∆Eacc for back tracking, since the change in energy per turn will change sign
for the backward tracking, the acceleration should still be subtracted.

In the translation, the decision was taken to use the same coordinate system for tracking as in
the original implementation (∆ϕ,∆E). The coordinate system could be changed to an alternative,
but for typical use cases there would be no benefit to the user. Further, for advanced use cases, it
is likely that more complex tracking would be beneficial, in which case the built-in tracking routines
would not be used.

To allow more complex tracking, an external tracker such as BLonD can be used [4]. BLonD
allows highly complex tracking scenarios, far beyond what would be suitable for inclusion in the
tomography code, the result of this tracking can then be imported, replacing the built-in tracking
step. The tracking in BLonD uses (∆t, ∆E) coordinates, the particle coordinates must be converted
to bin numbers prior to reconstruction, which would be required for any coordinate system.
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2.3 Reconstruction

The principle of back-projection, projection, and difference has not been modified. However, because
the particle coordinates are stored, each particle is weighted individually, rather than weights being
applied to a grid.

2.3.1 Back Projection

In the back projection step, the weight of each particle is adjusted. At the end of each iteration, the
particle weights are given by

Wi = Wi +
N∑
j=0

Pj(Xi,j), (3)

where Wi is the weight of the ith particle, N is the number of measured profiles, Pj is the jth profile
and Xi,j is the phase bin of the ith particle at the jth profile. On the first iteration Wi is 0 and Pj are
the measured profiles. On subsequent iterations Pj is replaced by the difference between measured
and reconstructed profiles (∆Pj).

Figure 8 shows how 3 particles would have their weight updated (weight indicated by size) on
5 steps under identical profiles. The weight of the particles at the end of each step is indicated in
Table 2, on each step the weight of the particle is increased by the amplitude of the profile in the
corresponding bin.

0 1 2 3 4 5 6 7 8
Phase Bin

0

2

4

6

8

10

12

En
er

gy
 B

in 1
1

1
2

2

2

3

3

3

4

4

4

5

5

5

0

1

2

3

4

Am
pl

itu
de

Figure 8: Weights of particles tracked over 5 steps, weights are given in Table 2. On steps 1 and 2,
the weight of the green triangle is 0, therefore it cannot be seen.
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Step Red circle Blue star Green triangle

1 1 2 0
2 2 4 0
3 4 8 1
4 7 10 2
5 10 12 4

Table 2: Weights of the particles shown in Fig. 8.

On the first iteration, the weights of the particles are defined by the measured beam profile. For all
subsequent iterations the difference between the measured and reconstructed profiles is used. Figure 9
shows the second back projection iteration, where the weights of the particles can be increased or
decreased, depending on the bin. The corresponding weights are given in Table 3. Note that the
green triangle has its weight reduced to 0 on step 2, but it does not go negative as this would be
un-physical. At the end of each iteration, any particle with W < 0 is reset to W = 0.
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Figure 9: Weights of particles tracked over 5 steps, weights are given in Table 3. After the first step,
the weight of the green triangle is 0, therefore it can no longer be seen.
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Step Red circle Blue star Green triangle

1 9 11 2
2 8 10 0
3 7 12 0
4 8 11 0
5 9 10 0

Table 3: Weights of the particles shown in Fig. 9.

2.3.2 Projection

In the projection step, the weights of the particles are summed in each bin, creating a time projection
of the reconstructed phase space. The measured and reconstructed profiles can then be directly
compared, and the difference used to update the reconstructed phase space. For each iteration the
reconstructed projection is given by

P̄j,n =
M∑
i=0

w,w =

{
Wi, if Xi,j = n

0, otherwise
, (4)

where P̄j,n is the nth bin of the jth reconstructed profile, M is the number of tracked particles, Wi

is the weight of the ith particle and Xi,j is the bin number of the ith particle at the jth profile.
Figure 10 shows the three particles discussed in the previous section (circle, star, triangle) con-

tributing to the projections of 5 sequential profiles. For each bin of each profile (red, 1; blue, 2; green,
3; purple, 4; orange, 5) the amplitude is given by the sum of the weights of particles of correspond-
ing colour and number in that bin. After computing the projections, the reconstructed profiles are
normalised and can then be directly compared to the measured profiles, which are also normalised.

2.3.3 Difference

This step is unchanged in the new implementation, but is described in detail for completeness. After
the projection step, the difference between the measured and reconstructed profiles is computed by

∆Pj,n = Pj,n − P̄j,n, (5)

where ∆Pj,n is the difference between the measurement and reconstruction of the jth profile in the
nth bin, Pj,n is the measured value in the jth profile and nth bin, P̄j,n is the reconstructed value at
the jth profile and nth bin.

In order to obtain a faster convergence, the difference is multiplied by a weighting factor, defined
by the number of macroparticles in each bin. In the tails of the bunch the number of particles is
relatively small, therefore a difference in the projection at the tail indicates a larger error in weight
than a difference in the centre. The weighting of each bin is given by

dj,n = ∆Pj,n ×
Mmax

Mn

, (6)

where dj,n is the weight of the jth profile of the nth bin, Mmax is the number of macroparticles in
the most densely populated bin and Mn is the number of macroparticles in the nth bin. The effect
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Figure 10: The contributions made by 3 particles with weights 10 (circle), 12 (star) and 4 (triangle)
to the projections on 5 sequential profiles (red, blue, green, purple and orange).

of this can be seen in Fig. 11, which shows the measured and reconstructed profiles on the left, and
the weighted and unweighted differences on the right after 1 iteration.
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Figure 11: Measured and reconstructed profiles (left) and weighted and unweighted differences (right)
after 1 iteration.
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After each iteration, ∆P can be used to define a figure of merit for the quality of reconstruction
called the discrepancy. The discrepancy between the reconstructed and the measured profiles is
defined as

D =

√√√√√ N∑
j=1

L∑
n=1

∆Pj,n

NL
(7)

where D is the discrepancy for the current iteration, N is the number of measured profiles, L is the
number of bins per profile.

2.3.4 Iteration

As in the original Fortran95 implementation, a reconstruction is computed in an iterative process.
The back projection, projection and difference are run sequentially for a user-defined number of
iterations. For suitable input data, it will rapidly converge to an accurate reconstruction of the
longitudinal phase space.

Figure 12 shows the first profile for a bunch undergoing large quadrupole oscillations. The black
line shows the measured profile, the coloured lines show the projections after 0, 1, 5, 10 and 30
iterations. Figure 13 shows the measured, reconstructed and difference waterfalls after the same
number of iterations, clearly showing how the complete reconstruction converges with the measured
profiles.
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Figure 12: The projection of the first profile for a bunch undergoing large quadrupole oscillations
after different numbers of iterations.
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Figure 13: Measured, recreated and difference profiles for a bunch undergoing large quadrupole
oscillations after different numbers of iterations. The colour axis are fixed, showing how an increasing
number of iterations allows the reconstruction to converge to the measured profiles.
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2.4 Online Tomography

The input/output of the Fortran95 code required intermediate files to be written to disk, and the
use of STDIN and STDOUT. For backwards compatibility, this functionality can be replicated using
functionality found in the tomo input and tomo output modules. However, it is no longer mandatory.
The ability to perform a full reconstruction and retrieve results with all information remaining in
memory raises the possibility of faster run times in suitable situations. One such use case would
be online tomography, where every cycle from an accelerator would be measured, the reconstruction
performed and phase space parameters published [5].

Online tomography would impose strict requirements on the run time of the reconstructions. Since
the library allows for the tomography routines to run independently from the rest of the algorithm, a
minimal version can be used, which only executes the iterative tomography routines. The functions
for this approach to reconstruction have been written in optimised C++, parallelized using OpenMP.

In this case, instead of tracking particles for each reconstruction, tracking is performed once
for given measurement conditions and saved to a database. Then, for each reconstruction, particle
coordinates are loaded from the database and only the iterative tomography routine is run. This has
been demonstrated using reference measurements from run 2, and shown to allow a reconstruction
to be computed in significantly under 1 second, the study is discussed in the following section.

3 Reconstruction Quality and Performance

The two primary objectives for the translated version were:

1. The reconstruction quality be at least as good as the original version. This was determined by
comparing the discrepancy between the measured and reconstructed profiles for a large set of
reference measurements.

2. Run times below half a basic period must be possible. This limit was chosen so that two
reconstructions would be possible within the length of the PSB cycle, to allow an injection and
extraction measurement to be done.

This section describes the tests used to confirm that both these objectives were met.

3.1 Output Quality

To maintain accurate measurements of the longitudinal distribution, it is imperative that the quality
of the results is at least as good with the new implementation as it is with the Fortran95 version.
To that end a benchmarking was done of the Python/C++ version with the Fortran95 version. At
the end of reconstruction, the discrepancy between the measured and reconstructed profiles gives a
measure of the reconstruction quality.

For the PS, PSB, AD and LEIR a large number of reference measurements exist, which have been
used to compare the discrepancy of both implementations. In total 1219 input files are available,
however many are not intended for reconstruction, such as references for PS transition crossing. Of
the available files, 919 gave sufficiently accurate reconstructions to be of interest. For each of these
input files the reconstruction was performed with both versions of the code, and the discrepancy of
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the final reconstruction compared. Of the 919 reference files considered, 586 had a lower discrepancy
when reconstructed with the Python/C++ implementation.

Figure 14 gives a comparison between the two implementations for all reference input with a
discrepancy below 4 × 10−2, which is the majority of cases. The main plot shows a histogram of the
discrepancy of each input file, the Python histogram is in red and the Fortran in blue, where the
two overlap is shown in purple. The inset plot shows a histogram of the ratio of the Python/C++
discrepancy to the Fortran discrepancy. From Fig. 14 it can be seen that there is very little difference
between the discrepancies for the two codes, with a slightly lower average discrepancy from the
Python/C++ implementation.
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Figure 14: A comparison of the reconstruction discrepancy for tomography reference files. Main plot:
Histogram of discrepancies for the Python/C++ code (red) and Fortran (blue), overlapping regions
are shown in purple. Inset: Histogram of the Python/C++ discrepancy to the Fortran discrepancy
for each reconstruction.

3.2 Fast Reconstruction

As described in Section 2.1, the tomography library is designed in such a way that parts of the
reconstruction process can be executed separately. This allows a minimalist program to be created,
consisting only of the tomographic reconstruction without particle tracking or data treatment. A
database can be filled with tracked particles corresponding to frequently used machine settings, these
can then be loaded on demand and combined with the measured profiles for faster reconstruction.

The objective of this benchmark was to find the fastest reconstruction time in the Python/C++
implementation that can produce a reconstruction at least as accurate as the Fortran95 implement-
ation for a given input data file. For each test case the rebinning factor and the number of tracked
macroparticles were varied. For one of the input files, the resulting run times and discrepancies
are illustrated in Fig. 15, where the horizontal dashed line indicates the discrepancy of the original
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implementation with the rebinning factor and number of tracked particles (snpt) as defined in the
reference file. The snpt defines the square root of the number of macroparticles to be tracked per
phase space bin. In this case it can be seen that a rebin factor of 3, and snpt of 1 gives a lower
discrepancy than the Fortran95 and slightly more than 0.1 s reconstruction time.

Figure 15: Discrepancy and run time of the tomographic reconstruction while varying the input
parameters. The colours of the lines correspond to the value of the rebinning parameter, the colours
of the dots indicate the snpt parameter, which is the square root of the number of tracked particles per
area of phase space. The dashed green line shows the discrepancy of this input file when reconstructed
with the Fortran95 code.

For each of the input files tested the fastest reconstruction that gives a discrepancy at most
equal to that from the Fortran95 implementation was used. The reconstruction time and relative
discrepancy for each test case are shown in Fig. 16. The vertical dashed line indicates a run time of
0.5 seconds, this was chosen as an upper limit to ensure that it would be possible to perform two
reconstructions per 1.2 s basic period, whilst allowing an additional 100 ms per reconstruction for
data acquisition, pre- and post-processing and data transfer. The cycles and settings that correspond
to these results are shown in Table 4.
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Figure 16: Figure showing the run time and ratio between the discrepancy of the Python/C++ ver-
sion and the Fortran version. Each dot represents a file with some optimal reconstruction parameters
(see Table 4). The dashed green line marks the 0.5 second limit.
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#input Machine Cycle Cycle-time Run Time Dp/Df Rebin Snpt

1 LEIR NOMINAL C1840 0.428 0.939 2 1
2 LEIR EARLY C1675 0.089 0.979 2 2
3 PSB 8b4e C796 0.259 0.993 2 2
4 PSB BCMS C798 0.199 0.945 2 2
5 PSB LHC25 C798 0.114 0.872 2 2
6 PSB LHCINDIV C798 0.033 0.883 2 1
7 PSB NORMGPS C778 0.179 0.706 2 2
8 PSB SFTPRO (left) C798 0.255 0.952 1 4
9 PSB SFTPRO (right) C798 0.211 0.957 1 4
10 PS AD C1060 0.053 0.165 1 1
11 PS AD C200 0.111 0.742 1 1
12 PS ILHC100#4b C1130 0.013 0.948 2 1
13 PS ILHC75#3b C1050 0.044 0.923 2 2
14 PS ILHC75#3b C237 0.017 0.714 8 2
15 PS ILHC75#3b C344 0.065 0.722 2 1
16 PS LHC25#48 BCMS C1940 0.031 0.533 2 1
17 PS LHCINDIV C1395 0.031 0.748 2 1
18 PS LHCINDIV C200 0.264 0.690 1 1
19 PS LHCINDIV C740 0.091 0.811 2 1
20 PS SFT129Xe39+ C1130 0.053 0.515 1 1
21 PS SFT129Xe39+ C237 0.162 0.693 4 2
22 PS SFT129Xe39+ C500 0.045 0.721 2 1
23 PS TOF C690 0.264 0.498 1 1
24 PS TOF C200 0.433 0.573 2 1
25 LEIR NOMh3h6 C1840 0.423 0.831 2 2

Table 4: 2018 Reference measurements for scatter plot in Figure 16.

4 Conclusion

Longitudinal phase space tomography is a well established operational tool in the PS, PSB, AD and
LEIR. The operational implementation was a Fortran95 program optimised with High Performance
Fortran (HPF), giving fast high quality reconstructions in a short time. To allow future developments,
a new implementation written in mixed Python/C++ has been developed.

Thorough testing of the new implementation has shown that the reconstruction quality is equi-
valent to that of the original, and whilst the run time is longer for operational use cases the difference
is small enough to not be a concern. Further, due to the flexibility that has been introduced it is
now possible to run the reconstructions in a variety of ways. For applications requiring many re-
constructions with the same accelerator parameters, it is possible to pre-track the test particles and
then run only the iterative tomography routine, saving significant execution time and enabling online
tomography. In instances where more complicated tracking is desired, such as with intensity effects
or complex voltage functions, external tracking in a code like BLonD can be used in conjunction
with the tomographic reconstruction.
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Process New/Modified Functionality Module

Data I/O All data can be loaded from/stored in memory Multiple modules
Accelerator parameters Additional input methods machine.py
Tracking Initial distribution can be user defined tracking.py
Tomography Tracked coordinates can be input by user tomography.py
Measured profiles Pre-processed profiles can be input directly profiles.py
Phase Space Weighting Test particles weighted directly tomography.py
Post-processing Direct conversion to macro-particle distribution tomo output.py

Table 5: Most significant changes and new features introduced to the Tomography code.

Table 5 summarises the most significant changes that have been made to how different processes
within the reconstruction operate and new features that have been added. Further developments
are planned in the future, these will be aimed at facilitating tomography in the SPS and LHC, and
making the pre and post-processing suitable for online tomography.

5 Future Work

Two main areas of development are intended for the future. Firstly, the proposal for automated
tomography, detailed in [5], is planned to be implemented. The tomography routines described here
allow the reconstruction to be run very quickly, the future developments will focus on suitable pre-
and post-processing algorithms to rapidly treat the measured data and analyse the reconstructed
phase space. Secondly, the new algorithm is well suited for parallelisation, to allow even faster
reconstruction a GPU accelerated implementation is planned. The GPU version should allow reas-
onable reconstruction times for very large numbers of bunches, giving the opportunity to reconstruct
complete bunch trains in the PS, SPS and LHC.
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